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There are stationary solutions of finite amplitude convection in a layer of fluid 
heated from below which show increasing heat transport with decreasing 
Rayleigh number in the neighbourhood of its critical value. It is shown that 
those solutions are unstable and that convection with periodic time dependence 
can occur in these cases, when the heat flux is the given parameter instead of the 
temperature difference between the boundaries of the layer. The time dependence 
has been calculated explicitly for the case of convection with temperature 
variation of the material properties. 

1. Introduction 
The problem of finite amplitude convection in a layer heated from below 

usually is treated with the Rayleigh number as given. This parameter occurs in 
the governing equations of the problem as the dimensionless representation of 
the temperature difference between the two horizontal boundaries of the layer. 
In many experimental situations, however, as well as in geophysical or astro- 
physical convection problems, the temperature difference is not a directly given 
parameter. In  most of these cases the heat flux, or more exactIy, the rate of heat 
production in a layer below the convection layer, has to be regarded as the given 
independent parameter of the problem. This does not cause any difference as 
long as the relation between heat flux and Rayleigh number is purely monotonic. 
In  the presence of rotation, however, or when the temperature dependence of the 
material properties is considered, Rayleigh number and heat flux are not always 
monotonically related, and the physical situation differs with the heat production 
as the prescribed parameter instead of the temperature difference. In  the 
following we will investigate this problem by proceeding from general discussions 
to a special case in which the calculations can be carried out explicitly. 

First we shall develop a method similar to that used by Stuart (1958) to 
describe the time dependence of finite amplitude convection. This method 
considers the deviations from the static state of the layer introduced by the 
convection as small quantities. It is limited, therefore, to the neighbourhood of 
the critical Rayleigh number at  which the static state becomes unstable. 

Next we will show under very general assumptions that a stationary solution 
is unstable in the neighbourhood of the critical Rayleigh number when the heat 
transport increases with decreasing Rayleigh number. This can lead to the 
situation where a stable stationary solution does not exist for all values of the 
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heat flux, even when there are stable stationary solutions for all Rayleigh 
numbers. This point raises the question as to the type of non-stationary con- 
vection by which the heat is transported in those cases. We will show that a 
periodic relaxation process occurs under certain conditions. The convective 
motion grows until the effective Rayleigh number is lowered so far that the 
convection dies away. As soon as the heat transport by conduction only has 
increased the temperature gradient, convection will start growing again. 

Processes of the same physical nature occur in many problems. For example, 
the transport of stress by turbulent motion in parallel shear flow shows a similar 
behaviour known as the intermittency effect. Thus, the periodic convection may 
be useful as a model for transport phenomena in which the physical mechanism 
has unstable properties. 

To discuss the problem in detail we must solve the equations of convection in 
the presence of a given rate of heat production in a conduction layer below the 
convection layer. We will start with the stationary solution of the static problem 
without convection. We then introduce the Rayleigh number corresponding to 
the temperature difference in the static solution as the parameter and treat the 
effects due to the time dependence of the temperature at the boundaries 
separately. In  general, the problem of given heat production leads to a complex 
time-dependent boundary-value problem. The essential features of this problem, 
however, can be exhibited by considering two limit cases which show that con- 
vection with periodic time dependence can occur besides the asymptotically 
stationary solution. 

2. Time dependence of convection 

vection we will start with an equation of the following general form : 
To describe the method of solution for time-dependent finite amplitude con- 

D A ~  OK + RWA~ v~ = Qhpv v p v ~  + L h p ( a v ~ / a t ) ,  (2.1) 

where DhK, QApV, W,, and U,, are time-independent differential matrix operators 
with respect to the spatial co-ordinates. R is the R,ayleigh number, the relevant 
parameter of the problem, which corresponds to a characteristic temperature 
gradient in the fluid. Other dimensionless numbers, which may correspond to ar 
imposed magnetic field or the rate of rotation in a rotating frame of reference, 
have not been noted explicitly. The vector v, denotes the deviation of the physica’ 
quantities such as temperature, components of the fluid velocity or the magnetic 
field from the basic state, on which the convection acts as a perturbation. We 
have chosen the general notation in (2.1) because our discussion is based only on 
some general properties of this equation and does not depend on the kind of 
variables included in v,. A wide class of convection problems can be written in 
the form (2.1) by using the index notation [for example, see Schluter, Lortz & 
Busse (1965) and Lortz (1965)j. To complete the problem, proper boundary 
conditions for v, and its spatial derivatives have to be assumed. Since the 
vanishing solution always has to be a possible solution of the problem, the 
boundary conditions have to become linear homogeneous in the case of infini- 
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tesimal amplitudes. In  this case Qhpv can be omitted in (2.1) and we obtain a linear 
homogeneous boundary-value problem, which for simplicity we will call the 
linear problem. To exhibit the typical features of convection problems, we make 
the following assumptions about the linear problem. 

(i) The linear problem has only exponentially decaying solutions, unless the 
Rayleigh number exceeds a critical value R,. There exists at least one exponen- 
tially growing solution for R > R,, whose growth rate depends continuously on 
the Rayleigh number R so that there exists a stationary solution at R = R,. 

(ii) There exists the adjoint problem for the stationary linear problem which 
is given by D 2 , ~ f  + RWf,u,$ = 0, 

and proper boundary conditions so that the relation 

(u:, DA,u:>+ R ( u ~ ,  W*,U:) = ( u ~ , D ~ ~ u ~ > + R ( u ~ ,  W,$,U;) (2.3) 

holds, where ui and ui are arbitrary functions satisfying the boundary conditions 
of the linear problem and its adjoint problem respectively. The brackets indicate 
the average over the contained fluid. 

(iii) In  addition we will assume that W,, is not singular, so that we can 
normalize the eigenfunctions uAn of the linear stationary problem regarding it as 
an eigenvalue problem with R as eigenvalue 

We are interested in solutions with small but finite amplitudes corresponding 
to Rayleigh numbers in the neighbourhood of the critical Rayleigh number R,. 
Thus we try to  obtain solutions by introducing the expansions 

1 v* = s v y  + 82Vj12) + . . . , 
R = R,+ER(')+E~R(~)+ ..., 

where the time-independent parameter E is a measure of the order of magnitude 
of the amplitude. This kind of expansion has been used by Malkus & Veronis 
(1958) and by Schliiter et aH. (1965) to obtain solutions of the stationary problem. 
We wish to include time-dependent solutions and therefore have to relate the 
order of magnitude of the term U,, av,/at to the rest of the terms. For this purpose 
we scale the time, similarly to Veronis (1959), by introducing a 'relaxation 
frequency ' p, 

Jo that the maximum of U,,av,lat' becomes of the order of the term WAKvK. The 
frequency p then is expanded in the same way as R: 

t' = pt, 

p = p(0) + ,pcu + +p). (2.6) 

Since we are interested in finite amplitude convection, we look for solutions 
whose amplitudes are bounded for all times, but not asymptotically decaying. 
This restriction will be sufficient to determine the time scale p of the finite 
amplitude convection. 

Introducing the expansion (2.5),  (2.6) into (2.1), we obtain from the first order 
of E the linear problem 

15 Fluid Mech. 28 
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Since we have already assumed that there can exist only exponentially decaying 
solutions besides the stationary problem, we have to choose = 0. The solution 
of this expansion can be written in the form 

vg, = U J X )  a@), 

where the time dependence of a(t) is of higher order. Because the amplitude is 
already measured by 8 ,  we will normalize this solution by subjecting it to the 
conditions 

1 T  22 a(t)dt  = 1 (2.8) 

and (4, K U , )  = 1, (2.9) 
u l  is the solution of the adjoint problem corresponding to uA. Using the ortho- 
normal set of eigenfunctioiis which belongs to the eigenvalue R, we can describe 
this correspondence by 

u, = c c, UAn, UAf = c c, Ufn. 
n n 

Prom the orders en+1, n b 1, we obtain linear inhomogeneous equations: 

D,, vLn+1) + R, W,, ~(,n+l) = QA,,(~',I)~Ln) + . . . + d")t$') Q )  

- W,,(R(1)vjr"' + . . . + R(")vy) 

+ u,,a(p("vy+ ... +p(")cj,'))/at'. (2.10) 

Since the inhomogeneous part of each equation is known from the solutions 
of the lower-order equations, this system (2.10) of equations can be solved 
sequentially. The only unknown terms - W,, R(")vil) + U,,p(")avL1'/at' are deter- 
mined by the solvability condition. In order for a solution to exist, the inhomo- 
geneous part on the right side of (2.10) has to be orthogonal to all solutions of the 
adjoint linear homogeneous equation. These solutions are represented by the set 
utm and thus the condition of solvability yields, for example, in second order the 
following system of equations: 

{~f,,, QhQu V',"U;") - R(')(u,+,, W,, w',") + (u,f,, U,,p(l) avil'/at') = 0. (2.11) 

If we choose a(t') uAf instead of u t , ,  we get a necessary condition which will be 
sufficient to determine the time dependence in this order. To discuss this condition 
we will assume at first that the first term in (2.11) vanishes identically. In  this 
case we obtain 

where M is the constant i{uhf, U,, u,). Because this equation again admits only 
exponentially time-dependent solutions for a(t'), we have to conclude 

Mp(l)aa2(t')/at' - R W ( t ' )  = 0, (2.12) 

p(l' = B(1) = 0 

in this case. The higher orders will yield the same result as long as the term with 
QApy vanishes identically. To discuss the general case, we will assume that in the 
(n + 1)th order we first get a non-vanishing integral term with QApv. The equation 
for the amplitude then takes the form 

(uA, Q,,,,(VF)W,Z"' +- . . . + v ~ ' v $ ~ ' ) )  a(t') - Hn)a2(t') +,dn)N aa2((t')/at' = 0. (2.13) 
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Since we can replace the bracket by Q@+l(t') with a time-independent constant Q, 
the solution of this equation corresponding to an initial value a0 at the time 
t' = 0 can be obtained easily: 

a, exp [nR(")t'/M,dn)] 
1 +ao Q(exp [nR(n)t'/Mp(n)] - l)/R(n) ' 

a(t') = (2.14) 

This solution includes the case of the stationary finite amplitude 

a(t') = a,, = Rcn)/Q, 

where R(n) is determined by R(n) = Q according to the normalization condition 
(2.9). The other solutions approach the stationary solution for t > 0 if ~nR(n) is 
positive. If E"R(~) is negative every solution corresponding to an initial value a. 
different from 1 is either decaying to zero or diverging. Thus the stationary 
solution is unstable in this case with respect to perturbations of the amplitude. 
Since for sufficiently small amplitudes 161 the Rayleigh number is given by 
R = R,+ B ~ R ( ~ ) ,  we can formulate the result: every stationary solution is unstable 
in a range of suficientZy small amplitudes I B ~  for which (did /el) (R- R,) is negative. 
There are convection problems where due to this kind of instability all stationary 
solutions are unstable for sufficiently small amplitudes /el. Since the heat trans- 
port is usually a monotone function of the amplitude 181, this leads to the question: 
which kind of convection will occur, if a fixed value of the heat flux is given 
corresponding to amplitudes in this range? 

Before we discuss the problem of convection in the case of a given heat flux, 
we have to make several remarks on the subject of this section. 

First we will rewrite (2.13) after multiplying it by en+2. Introducing the 
definition s2a2(t) = A ( t )  and using the approximate relations 

p(n)dn)t M t ' ,  enR(n) M R - R,, 

we obtain MdA( t ) /d t  = A ( t )  [R-R,-R(n)A(t)gn]. (2.15) 

In  some cases the value of R(n) is very small, so that the contributions of the next 
higher order may be of equal importance even for rather small amplitudes lei, 
where the contributions of the remaining higher orders still can be neglected. 
Taking, for example, n = 1 we can include the effect of the next higher order by 
writing instead of (2.15) 

MdA(t ) /d t  = A ( t )  [R- R,-R(')A*(t)-R(')A(t)], (2.16) 

corresponding to the approximation R - R, z sR(l) + e2R@) for the Rayleigh 
number. Equation (2.16) describes the time dependence of the solution, which 
represents the convection flow in the form of hexagonal cells in a fluid layer 
heated from below. In  this case R(I) can be regarded as small because it is pro- 
portional to the variation of the material properties in the layer. The hexagon 
solution has been investigated by several authors (for a review of this work see 
Segel, 1966). An analysis which includes the variation of all material properties 
has been done by Busse (1962), to which we will hereafter refer as I. It has been 
shown in I that the hexagon solution can be stable only if eR(1) is negative. Hence 
this solution is an example of the instability discussed in this section. Figure 1 a 

15-2 
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shows qualitatively the function s(R) indicating the unstable range by a dashed 
line. The corresponding dependence of the heat transport is plotted in figure 1 b 
assuming R@) < 1. Since it has also been shown in I that no other stable solution 

RC 
R 

( a )  

/ 
/ 

/ 
/ 

/ 

RC 
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( b )  

FIGURE 1. (a )  The dependence of the amplitude E on the Rayleigh number R. 
( b )  The dependence of the heat transport H on the Rayleigh number R.  

exists in a certain neighbourhood of R,, the heat flux H shows the range 
H, < H < Hb where it cannot be transported by a stationary solution. This fact 
has not yet been proved for other problems with unstable H ( R )  dependence. 
Therefore, we will use in further discussion the case of the hexagon solution to 
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exhibit the features of non-stationary convection. When R(2) becomes greater 
than 1,  as in the case where the Prandtl number is small in comparison with 1, 
the point H, drops below H,, and stationary solutions are possible for all values 
of H in the range where the theory is applicable. 

3. Boundary conditions for a convection layer with given rate of heat 
production 

In  this section we will assume that the convection layer is confined between 
two horizontal infinite planes. We introduce Cartesian co-ordinates with the 
z-direction perpendicular to the planes so that the convection layer is described by 

-4 < z < 1. ‘ 2  

Adjacent to the convection layer we assume two solid conductive layers, the 
lower one confined to the region 

--- D < z <  -&. 
For simplicity we will assume that the upper conduction layer is completely 
symmetric with the lower one with respect to the plane z = 0. Further, we assume 
that the conduction layers have constant heat conductivity and constant heat 
capacity per unit volume differing from the values of the convection layer by the 
factors E and y. In  order that the static state may be a possible solution of the 
problem, the heat sources in the lower conduction layer and the corresponding 
heat sinks in the upper layer have to be arranged homogeneously with respect to 
the horizontal co-ordinates. Thus the temperature distribution To in the static 
case depends only on z, and we can write the temperature distribution 

T ( x ,  Y, 2, t )  = T O W  + w, Y, 2, t ) .  (3.1) 

Our intention is to find boundary conditions for the deviation 0 from the static 
solution in such a way that the problem is reduced to a boundary-value problem 
for the convection layer alone. Since the heat production is constant the equation 
for 0 in the upper conduction layer is linear and homogeneous, 

~ A O  - 7 asp = 0. (3.2) 

Only 5 and T,J occur in this equation since we assume that all variables have been 
made dimensionless in terms of characteristic quantities of the convection layer 
in the usual procedure (Schluter et al. 1965). The solution of (3.2) must fulfil the 
conditions of continuity of temperature and heat flux a t  z = and a boundary 
condition at z = D + 4. Assuming that the whole system is enclosed by isolating 
walls the latter condition is 

ae/az = o at z = D++. (3.3) 

We will solve (3.2) in terms of a given boundary value OB at z = 8. The condition 
of continuity for the heat flux, 

(ae/a~) l , ,~+~ = ( a e p z )  l B = + o  = (aqaz), ,  (3.4) 
will then give a relation between 0, and (aO,/at), which is the boundary condition 
for the temperature in the convection layer. 
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We can assume that OB satisfies the equation 

A,  0, = - a2eB, (3.5) 

where A2 is the Laplacian with respect to  the horizontal dimensions. This 
assumption allows us to separate variables in (3.2) and does not restrict this 
linear problem because an arbitrary 0, can be represented by a sum of trigo- 
nometric functions which satisfy an equation of the form (3.5). 

Using the function 

which is the solution of the following problem (see Courant & Hilbert 1937): 

x ( 8 , t )  = 1 for t < 0, 

(a /az)  x ( D  + 4, t )  = 0, 

x ( z ,  0) = 0, 

(a2/az2 - a2 - (q/[) a/at) x = 0 with 

we can write the solution of (3.2) in the form 

with OB(t )  = 0 for t < 0 as the initial condition. 

layer can be written immediately: 
With (3.7) the boundary condition for’ the temperature 0 in the convection 

Since this general form of the boundary condition is very complicated, we will 
discuss it in two special cases where (3.8) can be simplified. These are case A when 
the thermal thickness (ql[)*D of the conduction layer is small as compared with 
the thickness of the convection layer, and case B when the thickness of the con- 
duction layer is large. 

Since we know from the discussion in 0 2 that the time variation of the con- 
vection can be neglected to the order of the linear part of the equation, we can 
assume in case A where (TI[)* D < 1 holds, that the time dependence of the term 
(aO, /aT)  is small as compared with the time dependence of the exponential terms 
in ~ ( z ,  t--7). Thus the evaluation of the integral (3.8) yields 

It is known from the solutions of the stationary convection problem that the 
parameter a is either vanishing or is of the order n. In the latter case the second 
term in (3.9) has to be neglected in comparison with the first term because of the 
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slight time dependence of 8. For a = 0 the first term vanishes and we obtain as 
boundary conditions in case A: 

aO/az=Ta[OtanhaD at z = + &  for u + O ,  (3.10 a )  

ae/az = T qDae/at at  z = f 4 for a = 0. (3.10 b )  

In  case B, when D is large as compared to 1, it  is convenient to assume the limit 
case D = co, where (3.7) takes the integral form 

By transforming the integral we arrive at the following boundary condition in 

Again we can make the distinction between those components of temperature 
whose average values with respect to the horizontal dimensions vanish and for 
which the exponential time dependence is dominant in (3.12) in comparison with 
that of 0, and the component that gives the average value of 0 and corresponds 
to a = 0. Hence the boundary conditions in case B are: 

4. The equation for the time dependence of the amplitude 
The boundary conditions for the temperature 0 in the convection layer show 

the fact that, in case A as well as in case B, only the condition for the horizontal 
average of 0, which we will denote by 8, is time dependent. We will assume in this 
section that the solution of the stationary problem with fixed values of the 
average temperature at the boundary, corresponding to the boundary condition 
8 = 0 at z = f 9, is known. Actually this is true only for the case of infinite con- 
ducting boundaries, where [ goes to infinity in (3.10) and (3.13) and explicit 
calculations are given in I for various boundary conditions of the fluid velocity. 
It has been shown, however, in I that the case of finitely conducting boundaries 
leads qualitatively to the same results. Since our considerations do not depend 
upon the exact values of R(l) and Ra, the assumption is appropriate. 

Because 8 vanishes in the lowest order-the static state is always stable with 
respect to disturbances which do not depend on the horizontal dimensions-we 
have to deal with the equation only in the second order where in the heat con- 
duction equation a term due to the convection arises: 

- 

aga - a @ p  = vy) a, eel). (4.1) 
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In  this equation vj is the vector of the convection flow. The Lime derivative can be 
neglected, corresponding to the result ,do) = 0 in $ 2 .  In  order to use the known 
results of the stationary solution, we make the definition 

- 
e y z ,  t )  = zzh(t) + 8(2)(z,  t ) ,  

- $(2)/at = ~$1) aj @1), 

( 4 4  

(4-3) 

h 

where P2) satisfies the equation 

A h 

with the boundary condition 8(2) = 0 at z = ? +. Thus 8(2) becomes identical to the 
corresponding solution of the stationary problem multiplied by the factor a2(t). 

In case A the boundary condition (3 .10b)  yields for h(t) the equation 

yD dhldt = - 2h - a8(2)/azl,=,, , 
which is solved by 

In  case B the equation 

The term by which 8 2 )  enters the solvability condition in the third order is given by 

{@I), +) aj p))  = {OW, wp a, p)). (4.8) 

Since e2 (8, w,) is the average of the convective heat transport which by definition 
is equal to (@/az)l,=,* and because the normalization (2.9) leads to 

(ewp)  = ayt) (4-9) 

in this special problem, we can write the additional term in the solvability 
condition 

(em, a2zh(t)/az) = ayt )  2h(t) \ 

(4.10) 
t 2  2 

= a2(t) so yD exp ( - - (t - r ) )  a2(r) d7 in case A, 
r D  

I in case B. 

Now the equation for the time dependence of the amplitude in the case of given 
heat production can be derived from the corresponding equation (2.16) in the 
case of fixed average temperature at the boundary by adding simply the term 

(4'10)7 dA(t)/dt = A( t )  [R-R,-R(2)A(t)+R(l)A+(t)-2h(t .M)].  (4.11) 

To eliminate the factor M we have used t' = t /M as the time variable and 
dropped the prime after the transformation. In  addition we have changed the 
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sign in front of R(l) regarding henceforth both R(l) and A*(t) as positive quantities. 
In  $ 5  we will discuss this equation in the case A showing that the instability of 
the stationary solution leads to periodic time-dependent solutions. The discussion 
of case B in $ 6 will yield the result that, in this case, the stationary solution is 
stabilized for all amplitudes. 

5. Periodic time-dependent convection 

ordinary differential equation using the expression (4.10) for h(t), 
Before discussing (4.11) in case A we transform it by differentiation into an 

The dot indicates the differentiation with respect to the time and K is an abbre- 
viation for 2MlyD. This equation has the stationary solution 

To determine when this solution is stable we superpose an infinitesimal disturb- 
ance with time dependence exp(at) and obtain the following relation for a 
from (5.1): 

= ,!=(,!=R(l)A$ - R(2)AS - K )  
2 2  

& ( t (~R( l )~$-R(2)A, -K)2-  K(A,[R@)+ 13 - &R(l)A;))k (5.3)  

In  the range of amplitude A$ < R(1)/2(R(2)+ l), i.e. in the range where in (5 .2 )  the 
negative sign is valid, the radical in (5.3) is always greater in magnitude than the 
first term and growth rates of both signs exist. The range of this instability as 
well as the dependence of the amplitude A$ on the Rayleigh number R is the 
same as for the solution with given temperature difference, which is plotted in 
figure 1 ( a).  Only the scale is different since in that figure has to be replaced 
now by B2) + 1. 

In  the range At  2 R(1)/(2R(2)+ 2 )  instability occurs if, and only if, the first term 
on the right side of (5.3) is positive. This condition for instability 

z 1 R W $  - R(2)A, - K > 0 (5.4) 

shows that K has a stabilizing effect. Only in the limit K + 0 the stationary solution 
is unstable in the entire range A t  < R(1)/2R(2), in which the solution with fixed 
average temperature at the boundaries is unstable. Using (5 .2)  we can rewrite 
(5.4) in terms of given parameters of the problem 

In figure 2 the range of instability given by the inequality (5 .5 )  is shown for 
different values of K/R(1)2. In the cases of infinite conducting boundaries with 
Prandtl numbers at least of the order one, B2) for the hexagon solution is less 
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than one whatever the boundary conditions for the fluid velocity vector are. 
(For values of R(l) and are given also by Malkus & Veronis 
(1958) and Schluter et al. (1965).) For boundaries with finite conductivity and 
therefore with less restraint, smaller values of R(2) should be expected. When the 
Prandtl number is small in comparison with 1, R(2) exceeds 1 and instability can 
appear for subcritical values of R only. In  all cases the stationary solution can be 
stabilized if K becomes sufficiently large according to solution (6.4). 

see I ;  values for 

FIGURE 2.  The instability region. The stationary solution Af exists for parameter values 
above the solid line. It is unstable below the dashed lines corresponding to the values 0 (I), 
0.05 (11), 0.1 (111) of K/R( I ’~ .  

In  discussing the stability range we have assumed that all other disturbances 
besides the perturbation of the amplitude are irrevelant. This is justified because 
the stability analysis in I does not change, since no term with 6’ appears in the 
expressions for the growth rates of those disturbances. 

In  order to discuss the general time-dependent solution of (5.1) we transform 
(5.1) by introducing X = lnA, 

X + ( K + R(2)eX - +R(l)etx) 8 + K (  e x  + I P ) e X  - B1)e!iX - R + R,) = 0. (5.6) 
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This equation has the form of a generalized Lienard differential equation. Several 
theorems about the existence of periodic solutions of the equation can be found 
in the literature. The theorem by Levinson & Smith (1942) can be applied in the 
case of (5.6). It states that a periodic solution of (5.6) exists when: 

(5.7) i (i) the last bracket in (5.6) has a zero, 
(ii) the first bracket is negative at this zero, 

(iii) R - R, > 0. 

Since the zero determines the stationary solution, condition (ii) is identical with 
condition (5.4) for the instability of the stationary solution. In  their paper 
Levinson & Smith also give a sufficient condition for the stability of the periodic 
solution. In  terms of the amplitude A3 this condition is 

R(2)A- gR(l)A* + K > 0, (5.8) 

where the bar indicates the average with respect to time. This condition includes 
condition (5.4) as a special case when the periodic solution is stationary. Hence 
we obtain a good description of the behaviour of the solution of (5.1) : as long as 
the condition (5.8) can be fulfilled by the stationary solution, this solution is the 
stable solution; if this is not possible, the stationary solution changes into a 
periodic solution, where the condition (5.8) still can be fulfilled because the 
relation 2 > (AT)2 holds. 

For the numerical calculation we have used form (4.11) of the equation. Since 
the equation retains its form with (R- R,)/c in place of R - R, when the 
transformation 

A‘ = A/c ,  t’ = ct, K’ = K/C,  = R(l)/ci 

with constant c is applied, the dependence on one of the parameters can be 
neglected. The numerical integrations (examples are plotted in figures 3-6) con- 
firm the description of the solution given above. According to (4.11) they show 
the following behaviour in the case R > R,: starting with a small initial value the 
solution grows exponentially because the first term on the right side determines 
the behaviour. Later the rate of growth increases due to the third term until the 
second term becomes important. If K is small, the solution comes close to the 
upper bound given by the vanishing right side of (4.11) for K = 0: 

Meanwhile the integral term in (4.11) increases and the solution decreases with 
a speed approximately proportional to K. When a stable stationary solution 
exists, this behaviour iterates in damped oscillations approaching the stationary 
solution asymptotically. If, however, the stationary solution is unstable, the 
decrease of the amplitude continues to very small, almost vanishing amplitudes. 
Only when the integral term has become smaller than R- R, can the solution 
start growing again. Because of this behaviour the period of the solution is 
approximately proportional to K - ~ .  
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For R - R, < 0 the stationary solution is approached in damped oscillations in 
the case where it is stable and the initial value of At fulfils the condition 

(5.10) 

Otherwise the stable solution of vanishing amplitude is reached asymptotically. 

0 5 10 25 30 
0 

FIGURE 3. The time dependence of A* for R-R, = 1; R‘l’ = 3; R‘2’ = 0.7; K = 0.05. 
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FIGURE 4. The time dependence of A: for R - R, = 1 ; R(1) = 5 ; R‘Z) = 0.7 ; K = 0.5. 
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FIGURE 5 .  The time dependence of A* for R- R, = 1 ; R(1) = 6; R'2' = 0.7: K = 0.5. 

6. Convection between two infinitely extended conduction layers 
As in case A the stationary solution of (4.10) for E2h(t) in case B is given by 

€%(t) = A,. (6.1) 

Thus the expression (5.2) for the amplitude A,  of the stationary convection holds 
also in case B. Again we will discuss the stability of the stationary solution by 
superposing an infinitesimal disturbance D(t). Since the equation for D(t),  

B(t) = D(t) ( p P ) A $  - R(Z)A,) + A,K(t), (6.2) 

with 

does not allow solutions of exponential time dependence, we use the method of 
Laplace transformation. Indicating the transformed variables by a tilde, 
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we get the following equations for the transformed variables : 

SD - Do = D( &R(I)A$ - R(2)A,) + A, R, 
R = ( - R + D) ( M / s g ) k  

(6 .5 )  

(6.6) 
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FIGURE 6. The time dependence of At  for R - R, = - 0.05 ; @' = 1 ;  R"' = 1.1; K = 0.02. 

The solution of these equations is given by 

Since the expression (6.7) has no pole in the right half of the complex plane if 
A$ > R(l)/2(R@)+ l), the stationary solution is stable in this region. For smaller 
amplitudes the disturbance D(t) has a growing time dependence. This instability 
corresponds to the positive growth rate (5.3) in the same region. It does not give 
rise to periodic time dependence but to solutions approaching either the vanishing 
or the stable stationary finite amplitude solution. 

7. Conclusion 
The concept of non-stationary convection frequently has been used to explain 

non-stationary processes in the earth's interior or in astrophysical problems. 
Periodic convection for Rayleigh numbers close to the critical value depends, 
according to 0 5, mainly on the following conditions. First, the material properties 
of the layer have to be sufficiently non-symmetric with respect to the middle plane 
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of the layer. B1) will be of the order of B2) if the variation of some material 
properties throughout the layer is of the order of their mean value. This can have 
the effect that only a part of the layer is gravitationally unstable in the static 
case. The second condition is a high enough heat capacity in the adjacent layer, 
which serves as a heat reservoir. In applications of this model, phase transitions 
can provide this capacity. A further condition for periodic convection is that the 
Prandtl number has to be of the order one or larger; otherwise the convective 
heat transport becomes unimportant in comparison with the conductive heat 
transport. 

The physical ideas, however, on which we based the discussion of non-stationary 
convection are important in a much wider range of problems. Howard (1964) has 
shown that a similar process where a conduction layer serves as an energy 
reservoir can explain features of turbulent convection at high Rayleigh numbers. 
Since most of the problems where this physical process is present are very com- 
plex, it was the intention of this work to exhibit the characteristic features of this 
process in a special case which may serve as a model for a wider class of problems. 

Part of this work was done during the author's visit to the Massachusetts 
Institute of Technology with financial support from the N.A.S.A. The author 
wishes to thank Professors L. N. Howard (MIT) and W. V. R. Malkus (UCLA) for 
encouraging discussions. The facilities of the MIT Computation Center were 
used for calculations. 
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